МИНИСТЕРСТВО ОБЩЕГО И ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ РОСТОВСКОЙ ОБЛАСТИ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ПРОФЕССИОНАЛЬНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ РОСТОВСКОЙ ОБЛАСТИ «РОСТОВСКИЙ-НА-ДОНУ КОЛЛЕДЖ РАДИОЭЛЕКТРОНИКИ, ИНФОРМАЦИОННЫХ И ПРОМЫШЛЕННЫХ ТЕХНОЛОГИЙ» (ГБПОУ РО «РКРИПТ»)

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

для проведения текущего контроля успеваемости и промежуточной аттестации по дисциплине

ОП.05 МАТЕРИАЛОВЕДЕНИЕ

Специальность:

15.02.14 Оснащение средствами автоматизации технологических процессов и производств (по отраслям)

Квалификация выпускника: техник

Форма обучения: очная

СОГЛАСОВАНО

Начальник методического отдела

Ясь. Н.В. Вострякова

«<u>28</u>» апресед 2023 г.

ОДОБРЕНО

Цикловой комиссией

промышленных технологий

Пр. № Z OT « 27» феврап 2023 г.

Председатель ЦК

В.А. Ламин

УТВЕРЖДАЮ

Заместитель директора

по учебно-методической работе

Уберешей С.А. Будасова

« 88 » auf co ec 2023 г

Фонд оценочных средств по дисциплине ОП.05 «Материаловедение» разработан на основе ФГОС СПО по специальности 15.02.14 Оснащение средствами автоматизации технологических процессов и производств (по отраслям), рабочей программы учебной дисциплины, локальными нормативными актами Колледжа.

Разработчик:

Государственное бюджетное профессиональное образовательное учреждение Ростовской области «Ростовский-на-Дону колледж радиоэлектроники, информационных и промышленных технологий»

СОДЕРЖАНИЕ

		стр
1.	ПАСПОРТ ФОНДА ОЦЕНОЧНЫХ СРЕДСТВ	4
2.	КОМПЛЕКТ КОНТРОЛЬНО-ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ УСПЕВАЕМОСТИ ПО УЧЕБНОЙ ДИСЦИПЛИНЕ	13
3.	КОМПЛЕКТ КОНТРОЛЬНО-ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО УЧЕБНОЙ ДИСЦИПЛИНЕ	13

1. ПАСПОРТ ФОНДА ОЦЕНОЧНЫХ СРЕДСТВ

1.1. Назначение, цель и задачи фонда оценочных средств

Фонд оценочных средств (далее - ФОС) по учебной дисциплине это комплект методических и контрольных измерительных материалов, оценочных средств, предназначенных для аттестации обучающихся на соответствие их персональных достижений поэтапным требованиям программы подготовки специалистов среднего звена по специальности (текущий контроль успеваемости и промежуточная аттестация).

Фонд оценочных средств по дисциплине «ОП.05 Материаловедение» разработан согласно требованиям ФГОС СПО и является неотъемлемой частью реализации программы подготовки специалистов среднего звена по специальности 15.02.14 Оснащение средствами автоматизации технологических процессов и производств (по отраслям).

Целью фонда оценочных средств является установление соответствия уровня подготовки обучающихся требованиям ФГОС СПО по специальности 15.02.14 Оснащение средствами автоматизации технологических процессов и производств (по отраслям).

Залачи ФОС:

- контроль и управление процессом приобретения обучающимися необходимых знаний, умений, практического опыта и освоения компетенций, определенных ФГОС СПО;
- контроль и управление достижением целей программы, определенных как набор общих и профессиональных компетенций;
- оценка достижений обучающихся в процессе обучения с выделением положительных / отрицательных результатов и планирование предупреждающих / корректирующих мероприятий;
- обеспечение соответствия результатов обучения задачам будущей профессиональной деятельности через совершенствование традиционных и внедрение инновационных методов обучения;
- достижение такого уровня контроля и управления качеством образования, который обеспечил бы признание квалификаций выпускников работодателями отрасли.

Фонд оценочных средств включает в себя контрольно-оценочные средства (задания и критерии их оценки, а также описания форм и процедур) для проведения текущего контроля успеваемости и промежуточной аттестации (определения качества освоения обучающимися результатов освоения учебной дисциплины (умений, знаний, практического опыта, ПК и ОК).

ФОС обеспечивает поэтапную (текущий контроль) и интегральную (промежуточная аттестация) оценку умений и знаний обучающихся, приобретаемых при обучении по учебной дисциплине, направленных на формирование компетенций.

Формой промежуточной аттестации по учебной дисциплине является экзамен.

1.2. Результаты освоения дисциплины, подлежащие проверке

В результате аттестации по учебной дисциплине осуществляется комплексная проверка предусмотренных ФГОС СПО по специальности и рабочей программой следующих умений и знаний, практического опыта, а также динамика формирования компетенций:

сырьевых материалов, применяемых в производ-	оценки результата - анализирует и выбирает виды механической, термической,	контроля и оценки резуль- татов обучения
ции) Умения У1 - определять свойства конструкционных и - сырьевых материалов, применяемых в производ- х	анализируат и рубираат руну маузичнаской тарминаской	
Умения У1 - определять свойства конструкционных и - сырьевых материалов, применяемых в производ- х	anamannyat u prifimaat punit mayanunaayaŭ tanmunaayaŭ	татов обучения
У1 - определять свойства конструкционных и - сырьевых материалов, применяемых в производ- х	анализируат и рыбираат рилы мауанинаской тарминаской	
сырьевых материалов, применяемых в производ-	ALIANIAN DE LA PRINCIPA DEL PRINCIPA DE LA PRINCIPA DEL PRI	
дению, свойствам, составу, назначению и способу приготовления и классифицировать их; ОК 01, ОК 02, ОК 04, ОК 05, ОК 09; ПК 1.2 ПК 1.3 ПК 2.1 ПК 2.2 ПК 3.3 У2 - определять твердость материалов; ОК 01, ОК 02, ОК 04, ОК 05, ОК 09. ПК 1.2 ПК 1.3 ПК 2.1 ПК 2.2 ПК 3.3 м У3 - определять режимы отжига, закалки и от-	химико-термической обработки металлов и сплавов; - выбирает прокладочные и уплотнительные материалы; - объясняет закономерности процессов кристаллизации и структурообразования металлов и сплавов, защиты от коррозии; - предъявляет методы измерения параметров и определения свойств материалов; - воспроизводит основные сведения о технологии производства материалов; - объясняет способы получения композиционных материалов; - предъявляет знания	Тестирование, письменные и устные формы опроса Оценка выполнения практических работ и лабораторных работ

31 - виды механической, химической и термической обработки металлов и сплавов; ОК 01, ОК 02, ОК 04, ОК 05, ОК 09. ПК 1.2 ПК 1.3 ПК 2.1 ПК 2.2 ПК 3.5 32 - виды прокладочных и уплотнительных материалов; ОК 01, ОК 02, ОК 04, ОК 05, ОК 09. ПК 1.2 ПК 1.3 ПК 2.1 ПК 2.2 ПК 3.5 33 - закономерности процессов кристаллизации и структурообразования металлов и сплавов, защиты от коррозии; ОК 01, ОК 02, ОК 04, ОК 05, ОК 09. ПК 1.2 ПК 1.3 ПК 2.1 ПК 2.2 ПК 3.5 34 - классификация, основные виды, маркировка, область применения и виды обработки конструкционных материалов, основные сведения об их назначении и свойствах, принципы их выбора	ОК 01, ОК 02, ОК 04, ОК 05, ОК 09. ПК 1.2 ПК 1.3 ПК 2.1 ПК 2.2 ПК 3.5 У7 - выбирать электротехнические материалы: проводники и диэлектрики по назначению и условиям эксплуатации; ОК 01, ОК 02, ОК 04, ОК 05, ОК 09. ПК 1.2 ПК 1.3 ПК 2.1 ПК 2.2 ПК 3.5 У8 - использовать нормативные документы для выбора проводниковых материалов с целью обеспечения требуемых характеристик изделий. ОК 01, ОК 02, ОК 04, ОК 05, ОК 09. ПК 1.2 ПК 1.3 ПК 2.1 ПК 2.2 ПК 3.5		
35 - методы измерения параметров и определения	Знания: 31 - виды механической, химической и термической обработки металлов и сплавов; ОК 01, ОК 02, ОК 04, ОК 05, ОК 09. ПК 1.2 ПК 1.3 ПК 2.1 ПК 2.2 ПК 3.5 32 - виды прокладочных и уплотнительных материалов; ОК 01, ОК 02, ОК 04, ОК 05, ОК 09. ПК 1.2 ПК 1.3 ПК 2.1 ПК 2.2 ПК 3.5 33 - закономерности процессов кристаллизации и структурообразования металлов и сплавов, защиты от коррозии; ОК 01, ОК 02, ОК 04, ОК 05, ОК 09. ПК 1.2 ПК 1.3 ПК 2.1 ПК 2.2 ПК 3.5 34 - классификация, основные виды, маркировка, область применения и виды обработки конструкционных материалов, основные сведения об их назначении и свойствах, принципы их выбора для применения в производстве;	ке, внешнему виду, происхождению, свойствам, составу, назначению и способу приготовления - классифицирует основные материалов; - объясняет способы определения режимов отжига, закалки и отпуска стали; - выполняет подбор конструкционных материалов по их назначению и условиям эксплуатации; - определяет способы и режимы обработки металлов для изго-	письменные и устные формы опроса Оценка выполнения практических

1 3 TK	• 2 1	ПК 2	-2 I	ΠK	35

- 36 основные сведения о кристаллизации и структуре расплавов
- OK 01, OK 02, OK 04, OK 05, OK 09. ΠΚ 1.2 ΠΚ 1.3 ΠΚ 2.1 ΠΚ 2.2 ΠΚ 3.5
- 37 основные сведения о назначении и свойствах металлов и сплавов, о технологии их производства
- OK 01, OK 02, OK 04, OK 05, OK 09. ΠΚ 1.2 ΠΚ 1.3 ΠΚ 2.1 ΠΚ 2.2 ΠΚ 3.5
- 38 основные свойства полимеров и их использование
- OK 01, OK 02, OK 04, OK 05, OK 09. IIK 1.2 IIK 1.3 IIK 2.1 IIK 2.2 IIK 3.5
- 39 особенности строения металлов и сплавов ОК 01, ОК 02, ОК 04, ОК 05, ОК 09. ПК 1.2 ПК 1.3 ПК 2.1 ПК 2.2 ПК 3.5
- 310 свойства смазочных и абразивных материалов
- OK 01, OK 02, OK 04, OK 05, OK 09. IIK 1.2 IIK 1.3 IIK 2.1 IIK 2.2 IIK 3.5
- 311 способы получения композиционных материалов
- OK 01, OK 02, OK 04, OK 05, OK 09. IIK 1.2 IIK 1.3 IIK 2.1 IIK 2.2 IIK 3.5
- 312 сущность технологических процессов литья, сварки, обработки металлов давлением и резанием
- OK 01, OK 02, OK 04, OK 05, OK 09. ΠΚ 1.2 ΠΚ 1.3 ΠΚ 2.1 ΠΚ 2.2 ΠΚ 3.5
- 313 строение и свойства полупроводниковых и проводниковых материалов, методы их исследования
- ОК 01, ОК 02, ОК 04, ОК 05, ОК 09. ПК 1.2 ПК

1.3 ПК 2.1 ПК 2.2 ПК 3.5	
314 - классификацию материалов по степени	
проводимости	
OK 01, OK 02, OK 04, OK 05, OK 09. IIK 1.2 IIK	
1.3 ПК 2.1 ПК 2.2 ПК 3.5	
315 - методы воздействия на структуру и свой-	
ства электротехнических материалов	
OK 01, OK 02, OK 04, OK 05, OK 09. IIK 1.2 IIK	
1.3 ПК 2.1 ПК 2.2 ПК 3.5	

1.3. Кодификатор оценочных средств

Наименование оценочного средства	Код оценочного средства	Представление оценочного средства в фонде
Устный (письменный) опрос по теме, разделу	O	Перечень вопросов по теме, разделу*
Семинар (дебаты дискуссия, круглый стол)	С	Перечень тем для изучения и (или) обсуждения*
Контрольная работа	КР	Комплект контрольных заданий по вариантам*
Тестирование	T	Комплект тестовых заданий по вариантам*
Курсовой проект (работа)	КП	Темы курсового проекта (работы), ссылка на методические указания по выполнению курсового проекта (работы)
Практическая работа	ПР	Номер и наименование практической работы, ссылка на методические указания по выполнению ПР.
Лабораторная работа	ЛР	Номер и наименование лабораторной работы, ссылка на методические указания по выполнению ЛР.
Задания типовые	3T	Комплект типовых заданий*
Разноуровневые задачи и задания	Р3	Комплект разноуровневых задач и заданий
Задания в рабочей тетради	PT	Номер задания, стр., ссылка на рабочую тетрадь.
Исследовательские работы	ИР	Примерная тематика исследовательских работ*
Творческие задания	Т3	Примерная тематика групповых и/или индивидуальных творческих заданий

Наименование оценочного средства	Код оценочного	Представление оценочного средства в фонде
	средства	
Проект	Π	Примерная тематика групповых и/или индивидуальных проектов*
Кейс (ситуационное задание)	К	Задания для решения кейса (комплект ситуационных заданий). Образцы ситуационных задач*.
Деловая (ролевая) игра	Д	Тема (проблема), концепция, роли и ожидаемый результат по каждой игре*
Эссе	Э	Тематика эссе
Тренажер	Tp	Комплект заданий для работы на тренажере
Электронный практикум/ Виртуальные лабораторные работы	ЭП	Перечень электронных практикумов, виртуальных лабораторных работ
Самостоятельная работа обучающихся	СР	Наименование задания для самостоятельной работы, ссылка на методические указания по выполнению внеаудиторной самостоятельной работы.
Экзаменационное задание (теоретический вопрос)	ЭТВ	Перечень теоретических вопросов, экзаменационные билеты
Экзаменационное задание (практическое задание)	ЭПЗ	Комплект практических заданий, экзаменационные билеты

1.4. Содержательно-компетентностная матрица оценочных средств текущего контроля успеваемости и промежуточной аттестации по учебной дисциплине «Основы проектирования технологической оснастки»

	Текущий і	контроль	Промежуточная аттестация			
Элемент учебной дисциплины	Коды проверяемых у, 3, ОК, ПК	Код оценоч- ного сред- ства	Коды проверяемых у, 3, ОК, ПК	Код оце- ночного средства	Форма контроля	
Раздел 1. Основы металловедения						
Тема 1.1. Общие сведения о строении вещества	У1, 33, 34	О	У1, 33, 34	ЭТВ	Экзамен	

			_	
Тема 1.2. Механические свойства материалов и основные методы их определения	У1, У2, 31, 33-	ЛР	У1, У2, 31, 33-	ЭТВ
Тема 1.3. Металлические сплавы и диаграммы состояния	У4, 39	ЛР	У4, 39	ЭТВ
Тема 1.4. Железо и его сплавы	У4, 39	O	У4, 39	ЭТВ
Раздел 2. Проводниковые и полупроводниковые мате	ериалы			
Тема 2.1. Классификация и основные свойства проводниковых материалов	У6-8, 313-15	О	У6-8, 313-15	ЭТВ
Тема 2.2. Проводниковые материалы с высокой электропроводностью	У6-8, 313-15	ПР	У6-8, 313-15	ЭТВ
Тема 2.3. Контактные материалы	У6-8, 313-15	O	У6-8, 313-15	ЭТВ
Тема 2.4. Материалы с большим удельным электрическим сопротивлением	У6-8, 313-15	ПР	У6-8, 313-15	ЭТВ
Тема 2.5. Провода и кабели	У6-8, 313-15	ЛР	У6-8, 313-15	ЭТВ
Тема 2.6. Характеристики полупроводниковых материалов	У6-8, 313-15	О	У6-8, 313-15	ЭТВ
Раздел 3. Магнитные материалы				
Тема 3.1. Магнитомягкие материалы	У3, У5-8, 31-2, 36-8, 39-12	0	У3, У5-8, 31-2, 36-8, 39-12	ЭТВ

Тема 3.2. Магнитотвёрдые материалы	У3, У5-8, 31-2, 36-8, 39-12	ЛР	У3, У5-8, 31-2, 36-8, 39-12	ЭТВ			
Раздел 4. Диэлектрические и электроизоляционные материалы							
Тема 4.1. Диэлектрические материалы	У3, У5-8, 31-2, 36-8, 39-12	ПР	У3, У5-8, 31-2, 36-8, 39-12	ЭТВ			
Тема 4.2. Газообразные и жидкие диэлектрики Активные диэлектрики	У3, У5-8, 31-2, 36-8, 39-12	О	У3, У5-8, 31-2, 36-8, 39-12	ЭТВ			
Тема 4.3. Полимеры и электроизоляционные пластмас- сы	У3, У5-8, 31-2, 36-8, 39-12	О	У3, У5-8, 31-2, 36-8, 39-12	ЭТВ			
Тема 4.4. Резины, лаки, эмали, компаунды и клеи Волокнистые материалы	У3, У5-8, 31-2, 36-8, 39-12	О	У3, У5-8, 31-2, 36-8, 39-12	ЭТВ			
Тема 4.5. Слюда, слюдяные материалы, стекло, керамика	У3, У5-8, 31-2, 36-8, 39-12	0	У3, У5-8, 31-2, 36-8, 39-12	ЭТВ			

3. КОМПЛЕКТ КОНТРОЛЬНО-ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ УСПЕВАЕМОСТИ ПО УЧЕБНОЙ ДИСЦИПЛИНЕ

Контроль и оценка результатов освоения учебной дисциплины «ОП.05 Материаловедение» осуществляется преподавателем в процессе:

- проведения устного или письменного опроса по теме, разделу;
- выполнения и защиты практических работ.

Устный или письменный опрос проводится на практических занятиях и затрагивает как тематику предшествующих занятий, так и лекционный материал и позволяет выяснить объем знаний студента по определенной теме, разделу, проблеме. Устный опрос в форме собеседования - специальная беседа преподавателя с обучающимся на темы, связанные с изучаемой дисциплиной, и рассчитанное на выяснение объема знаний обучающегося по определенному разделу, теме, проблеме и т.п.

Типовое задание - стандартные задания, позволяющие проверить умение решать как учебные, так и профессиональные задачи. Содержание заданий должно максимально соответствовать видам профессиональной деятельности.

Различают разноуровневые задачи и задания:

- а) ознакомительного, позволяющие оценивать и диагностировать знание фактического материала (базовые понятия, алгоритмы, факты) и умение правильно использовать специальные термины и понятия, узнавание объектов изучения в рамках определенного раздела дисциплины;
- б) репродуктивного уровня, позволяющие оценивать и диагностировать умения синтезировать, анализировать, обобщать фактический и теоретический материал с формулированием конкретных выводов, установлением причинно-следственных связей;
- в) продуктивного уровня, позволяющие оценивать и диагностировать умения, интегрировать знания различных областей, аргументировать собственную точку зрения, выполнять проблемные задания.

Тестирование представляет собой систему стандартизированных заданий, позволяющую автоматизировать процедуру измерения уровня знаний и умений обучающегося, направлено на проверку владения терминологическим аппаратом и конкретными знаниями по дисциплине. Тестирование по теме, разделу занимает часть учебного занятия (10-30 минут), правильность решения разбирается на том же или следующем занятии; частота тестирования определяется преподавателем.

Тестирование по темам, разделам проводится в письменном виде или в компьютерном с помощью тестовой оболочки или разработанных преподавателем тестов с использованием специализированных сервисов (Google-формы и др.), в которых баллы формируются автоматически и переводятся в систему оценок преподавателем в соответствии с утвержденной шкалой оценивания.

Контрольная работа является средством проверки умений применять полученные знания для решения задач определенного типа по теме или разделу.

Кейс-задания представляет собой проблемное задание, в котором обучающемуся предлагают осмыслить реальную профессионально-ориентированную ситуацию, необходимую для решения данной проблемы.

Практические занятия проводится в часы, выделенные учебным планом для отработки практических навыков освоения компетенциями, и предполагают аттестацию всех обучающихся за каждое занятие.

В ходе практического занятия обучающиеся приобретают умения, предусмотренные рабочей программой дисциплины, учатся использовать формулы, и применять различные методики расчета, анализировать полученные результаты и делать выводы, опираясь на теоретические знания.

Содержание, этапы проведения конкретного практического занятия или лабораторной работы, критерии оценки представлены в методических указаниях по выполнению лабораторных, практических работ.

Отчет по практической работе представляется в печатном виде в формате, предусмотренном шаблоном отчета по практической. Защита отчета проходит в форме доклада обучающегося по выполненной работе и ответов на вопросы преподавателя.

В случае невыполнения практических заданий в процессе обучения, их необходимо «отработать» до экзамена. Вид заданий, которые необходимо выполнить для ликвидации задолженности определяется в индивидуальном порядке, с учетом причин невыполнения.

Форма проведения текущего контроля успеваемости и промежуточной аттестации для обучающихся инвалидов и лиц с ограниченными возможностями здоровья выбирается с учетом индивидуальных психофизических особенностей (устно, письменно на бумаге, письменно на компьютере, в форме тестирования и т.п.). При необходимости обучающимся инвалидам и лицам с ограниченными возможностями здоровья предоставляется дополнительное время для подготовки ответа на экзамене.

3.1. Оценочные средства для проведения текущего контроля успеваемости

2.1 Комплект контрольно-оценочных средств для проведения текущего контроля знаний

Введение

Устный опрос

- 1. Дайте определение, материаловедение это....
- 2. Для чего необходимо изучать материаловедение?
- 3. Какие открытия в области материаловедения сделал П.П. Аносов?
- 4. Какие открытия в области материаловедения сделал Д.К. Чернов?
- 5. Какие открытия в области материаловедения сделал Н.С. Курнаков?
- 6. Перечислите советских ученых-материаловедов, внесших вклад в развитие материаловедения.
 - 7. Решением каких проблем занимаются материаловеды в настоящее время?
- 8. Приведите основные группы металлов и области их применения в промышленности.

Раздел 1. Основы металловедения и термической обработки

Тема 1.1. Общие сведения о строении вещества

Устный опрос

- 1. Что представляет собой кристалл?
- 2. Перечислите дефекты кристаллического строения металлов.
- 3. Изобразите кубическую гранецентрированную и гексагональную плотноупакованную кристаллические решетки аналогично кубической объемно-центрированной решетке, показанной на рис. 1.1. Приведите характеристики, следуя представленному примеру.

Пример. Кубическая объемно-центрированная решетка состоит из девяти атомов (восемь расположены в вершинах решетки и один - в центре). Такую решетку имеют хром Сг, вольфрам W, ванадий V и железо Fe при температурах до 900°C и свыше 1400 °C.

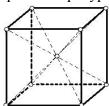


Рис. 1.1. Кубическая объемно-центрированная решетка

- 4. Дайте характеристику макро- и микроанализу, укажите цель их применения.
- 5. Перечислите основные механические свойства металлов и сплавов, дайте им определения и обозначения.
 - 6. Как проводится испытание на прочность? Оборудование, образцы.
- 7. Какие механические свойства можно определить при испытании образца на растяжение?
 - 8. Как проводится испытание на ударную вязкость? Оборудование, образцы.
 - 9. Перечислите способы определения твердости металлов и сплавов.

Ситуационные задачи Задача № 1 Определить твердость материала, зарисовать схему определения твердости по методу Бринелля (вариант – N_2 в журнале):

- 1. Определить твердость латуни HB MH/m^2 по методу Бринелля при толщине образца 15 мм, если при испытании шариком диаметра D=2,5 мм получен отпечаток d=1,7 мм. Нагрузка при испытании P=1000 H.
- 2. Определить твердость стали HB MH/m^2 по методу Бринелля при толщине образца менее 2 мм, если при испытании шариком диаметра D=2,5 мм получен отпечаток d=1,85 мм. Нагрузка при испытании P=1255 H
- 3. Определить твердость стали HB MH/M^2 по методу Бринелля при толщине образца 6 мм, если при испытании шариком диаметра D=10,0 мм получен отпечаток d=4,5 мм. Нагрузка при испытании P=3000 H.
- 4. Определить твердость бронзы HB MH/M^2 по методу Бринелля при толщине образца 4 мм, если при испытании шариком диаметра D=5,0 мм получен отпечаток d=3,65 мм. Нагрузка при испытании P=350 H
- 5. Определить твердость стали HB MH/M^2 по методу Бринелля при толщине образца более 6 мм, если при испытании шариком диаметра D=10,0 мм получен отпечаток d=8,25 мм. Нагрузка при испытании P=2500 H.
- 6. Определить твердость стали HB MH/M^2 по методу Бринелля при толщине образца 5 мм, если при испытании шариком диаметра D=5,0 мм получен отпечаток d=3,65 мм. Нагрузка при испытании P=450 H.
- 7. Определить твердость латуни HB MH/m^2 по методу Бринелля при толщине образца 6 мм, если при испытании шариком диаметра D=5,0 мм получен отпечаток d=4,25 мм. Нагрузка при испытании P=650 H.
- 8. Определить твердость латуни HB MH/m^2 по методу Бринелля при толщине образца менее 3 мм, если при испытании шариком диаметра D=2,5 мм получен отпечаток d=2,1 мм. Нагрузка при испытании P=1560 H.
- 9. Определить твердость стали HB MH/M^2 по методу Бринелля при толщине образца 4 мм, если при испытании шариком диаметра D=5,0 мм получен отпечаток d=2,5 мм. Нагрузка при испытании P=450 H.
- 10. Определить твердость бронзы HB MH/M^2 по методу Бринелля при толщине образца 6 мм, если при испытании шариком диаметра D=10,0 мм получен отпечаток d=3,9 мм. Нагрузка при испытании P=3000 H.
- 11. Определить твердость стали HB MH/M^2 по методу Бринелля при толщине образца 3 мм, если при испытании шариком диаметра D=5,0 мм получен отпечаток d=3,7 мм. Нагрузка при испытании P=1500 H.
- 12. Определить твердость бронзы HB MH/ 2 по методу Бринелля при толщине образца 5 мм, если при испытании шариком диаметра D=5,0 мм получен отпечаток d=4,84 мм. Нагрузка при испытании P=245 H.

Задача № 2

В соответствии с данными табл.2.1 требуется:

- 1. Определить E, v и G параметры упругих свойств материала.
- 2. Определить δ и ψ параметры пластических свойств материала.
- 3. По заданной диаграмме рис. 2.1 определить $\sigma_{\text{пи}}$, $\sigma_{\text{в}}$, $\sigma_{\text{т}}$ (или $\sigma_{\text{0,2}}$) параметры прочностных свойств материала (для диаграммы с выраженной площадкой текучести найти $\sigma_{\text{т}}$, если площадка текучести отсутствует оценить величину $\sigma_{\text{0,2}}$).
- 4. Определить G, исходя из данных, полученных в эксперименте на кручение образца.

Вариант задания определяется шифром — совокупностью трех цифр, условно обозначаемой буквами $\mathbf{A} \ \mathbf{B} \ \mathbf{B}$ так, что первой цифре соответствует буква \mathbf{A} , второй — \mathbf{B} , а третьей — \mathbf{B} . Шифр назначает преподаватель.

Таблица 2.1

Исходные данные к задаче 2

Номер	го, мм	A_0 , MM^2	Е, Н	$\Delta I 10^3$, мм	A_k , MM^2	l_k , MM	%, 3	8, %	М, Н м	ф, рад	д, мм	Номер диа-
0	125	490	3090	3,7	392	150	-0,05	0,3	100	0,004	25	X
1	100	320	1680	2,5	272	130	0,06	-0,25	90	0,005	24	I
2	80	180	810	2,0	135	104	-0,02	0,25	80	0,003	22	II
3	75	80	530	2,6	57	84	0,08	-0,35	60	0,014	15	III
4	50	50	360	1,7	35	56	-0,15	0,38	50	0,03	18	IV
5	40	30	190	1,6	24	50	0,05	-0,40	30	0,02	16	V
6	30	20	160	1,2	18	39	-0,13	0,32	20	0,009	20	VI
7	25	12	82	1,0	10	35	-0,09	0,37	10	0,01	10	VII
8	20	10	72	0,6	7,5	24	0,14	-0,33	8	0,008	25	VIII
9	15	8	24	0,5	6,2	18	-0,13	0,31	6	0,009	12	IX
Шифр	A						Б			E	3	

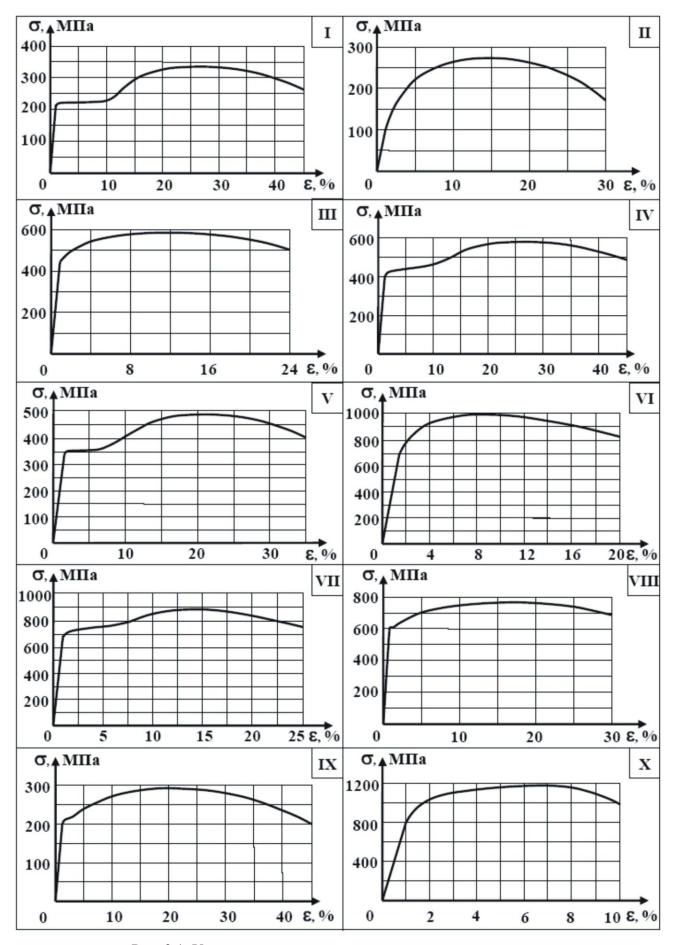


Рис. 2.1. Условные диаграммы растяжения материалов

Тема 1.2. Механические свойства материалов и основные методы их определения

Технический диктант

<u>Инструкция:</u> перед Вами набор высказываний, в которые нужно вставить пропущенные термины.

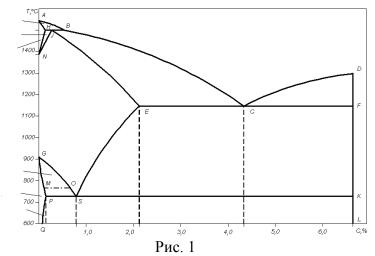
- 1. Кристаллизация протекает при термодинамических условиях, обеспечивающих снижение......системы (энергии Гиббса) Кристаллизация складывается из двух элементарных процессов – за-(роста кристаллов) 3. При малых больших образуетвеличинах ч.ц. И с.к. ся.....структура (крупнозернистая) увеличением C степени переохлаждения структура.....(измельчается)
- 5. Минимальный размер зародыша, при котором его рост сопровождается снижением энергии Гиббса, называется(критическим)
- 6. Искривленные кристаллы называют или(кристаллитами, зернами)
- 7. При росте кристаллов на частицах примесей, образование зародышей называют.....(гетерогенным)
- 8. Разветвленные древовидные кристаллы называют......(дендритами)
 9. При самопроизвольном образовании зародышей формируется
-структура (гомогенная)
 10. Основы теории кристаллизации разработаны основоположником металловедения......(Д.К.Черновым)

Тема 1.3. Металлические сплавы и диаграммы состояния

Устный опрос

1. Дайте определения следующим понятиям:

Понятие	Определение
Сплав	
Система	
Компонент	
Фаза	
Твердый раствор	
Химическое соединение	
Механическая смесь	
Диаграмма состояния	


- 2. Приведите принципы построения диаграмм состояния.
- 3. Как строится кривая охлаждения сплава?
- 4. Назовите наиболее часто встречающиеся типы диаграмм состояния сплавов

Тема 1.4. Железо и его сплавы

Устный опрос

- 1. По диаграмме состояния «Fe–Fe₃C» (рис. 1.):
- укажите линии ликвидус и солидус;

- укажите линии выделения Ц_I, Ц_{II}, Ц_{II};
- укажите линию сольвус;
- укажите линии изотермических превращений, температуру и название превращений.

2. В соответствии с диаграммой состояния «Fe–Fe₃C» дайте определения:

Понятие	Определение
Феррит	
Аустенит	
Цементит	
Перлит	
Ледебурит	
Сталь	
Чугун	

3. Перечислите сплавы, образующиеся по данной диаграмме, приведите их структуру при комнатной температуре

Ситуационные задачи

Задача № 1

Определите механические свойства (**HB**, $\sigma_{\text{в}}$, δ , ψ) стали с содержанием углерода **X**(%). Как маркировать такую сталь по ГОСТ 1050 – 88?

При решении задачи воспользуйтесь правилом Н.С. Курнакова. Необходимые для решения задачи численные значения свойств структурных составляющих стали феррита и перлита выбрать самостоятельно.

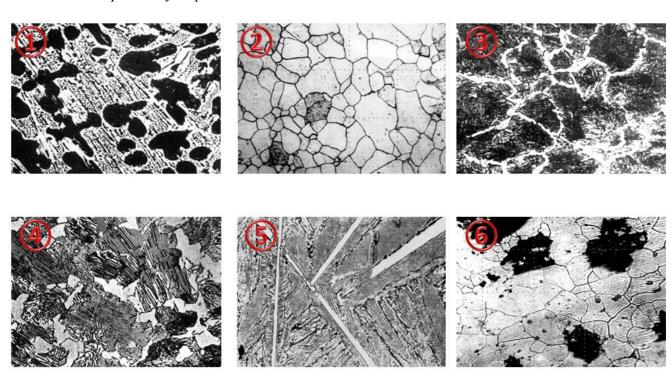
Варианты исходных данных к задаче № 1

Вариант	X	Определяемое свой-		Вариант	X	Определяемое свой-	
		ство				ство	
1	0,10	$\sigma_{_{\rm B}}$	δ	11	0,35	$\sigma_{_{\rm B}}$	δ
2	0,10	HB	Ψ	12	0,35	HB	Ψ
3	0,15	$\sigma_{_{\rm B}}$	δ	13	0,40	$\sigma_{_{\rm B}}$	δ
4	0,15	HB	Ψ	14	0,40	HB	Ψ
5	0,20	$\sigma_{_{\rm B}}$	δ	15	0,45	$\sigma_{\scriptscriptstyle \rm B}$	δ
6	0,20	HB	Ψ	16	0,50	HB	Ψ
7	0,25	$\sigma_{\scriptscriptstyle B}$	δ	17	0,55	$\sigma_{\scriptscriptstyle B}$	δ
8	0,25	HB	Ψ	18	0,55	HB	Ψ
9	0,30	$\sigma_{_{\rm B}}$	δ	19	0,60	$\sigma_{_{\rm B}}$	δ

10	0,30	HB	Ψ	20	0,60	HB	Ψ

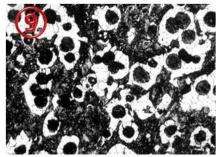
Задача № 2

Сколько углерода в доэвтектоидной стали, если перлита в ней X%? Как маркируется эта сталь по ГОСТ 1050 – 88? Определите механические свойства ($\mathbf{HB}, \sigma_{\mathbf{B}}, \delta, \psi$) стали.

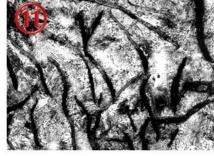

При решении задачи воспользуйтесь правилом Н.С. Курнакова. Необходимые для решения задачи численные значения свойств структурных составляющих стали феррита и перлита выбрать самостоятельно.

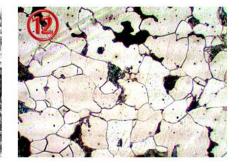
Варианты исходных данных к задаче № 2

Вариант	X	Определяе		Вариант	X	Определяе	мое свой-
		ство				ство	
1	10	$\sigma_{_{\rm B}}$	δ	11	15	$\sigma_{_{\rm B}}$	δ
2	15	HB	Ψ	12	20	HB	Ψ
3	20	$\sigma_{_{\rm B}}$	δ	13	25	$\sigma_{_{\rm B}}$	δ
4	25	HB	Ψ	14	30	HB	Ψ
5	30	$\sigma_{_{\rm B}}$	δ	15	35	$\sigma_{_{\rm B}}$	δ
6	35	HB	Ψ	16	40	HB	Ψ
7	40	$\sigma_{_{\rm B}}$	δ	17	45	$\sigma_{_{\rm B}}$	δ
8	45	HB	Ψ	18	50	HB	Ψ
9	50	$\sigma_{\scriptscriptstyle B}$	δ	19	55	$\sigma_{_{\rm B}}$	δ
10	55	HB	Ψ	20	60	HB	Ψ


Задача № 3

Определить по фотографиям микроструктур, вид железоуглеродистого сплава и приблизительное содержание углерода.





Технический диктант

<u>Инструкция:</u> перед Вами набор высказываний, в которые нужно вставить пропущенные термины.

- 1. Материал при приложении к нему внешних сил(деформируется)
- 2. Деформация, исчезающая после снятия нагрузки, является.....(упругой)
- 3. При пластическом деформировании атомы...., вследствие чего деформация становится необратимой (обмениваются местами)
- 4. При пластическом деформировании скольжение в кристаллической решетке происходит по плоскостям с наибольшей......(ретикулярной плотностью)
- 5. В решетке ГЦК плоскостями с наибольшей плотностью расположения атомов является семейство.......({111})
- 6. Состояние пластически деформированного металла является......(термодинамически неустойчивым)
- 7. Процессы, протекающие при нагреве холоднодеформированного металла, подразделяют на две основные стадии:(возврат, рекристаллизация)
- 8. Процессы образования субзерен с малоугловыми границами называют.....(полигонизацией)
- 9. Степень деформации, при которой нагрев деформированного тела приводит к гигантскому росту рекристаллизованных зерен, называют......(критической)
- 10. Температура рекристаллизации зависит отметалла (температуры плавления)

Тест

Вариант № 1

- 1. От чего зависит твердость углеродистой стали после закалки?
- а) от содержания углерода;
- б) от температуры нагрева;
- в) от скорости нагрева.

- 2. В какой последовательности осуществляют термическую обработку стали?
- а) закалка, отжиг, отпуск;
- б) закалка, отпуск, отжиг;
- в) отжиг (при необходимости), закалка, отпуск.
- 3. Для чего применяют отжиг детали?
- а) для снижения твердости;
- б) для снижения хрупкости;
- в) для нормализации детали.
- 4. Для чего применяют отпуск детали?
- а) для снижения твердости;
- б) для получения требуемых механических свойств;
- в) для нормализации детали.
- 5. Какую кристаллическую решетку имеет мартенсит?
- а) кубическую;
- б) ГПУ;
- в) тетрагональную;

Вариант № 2

- 1. Термическая обработка «улучшение» это:
- а) закалка + низкий отпуск;
- б) закалка + высокий отпуск;
- в) закалка + средний отпуск.
- 2. Как называется процесс нагревания детали до определенной температуры (около 850 градусов) и затем быстрого охлаждения в воде или в масле?
 - а) отжиг;
 - б) отпуск;
 - в) закалка;
 - г) нормализация.
 - 3. В какой среде охлаждают углеродистую сталь при закалке?
 - а) в жидкостях;
 - б) на воздухе;
 - в) в предварительно нагретой среде.
 - 4. Изменение каких свойств стали происходит в процессе закалки?
 - а) прочность увеличивается, вязкость уменьшается;
 - б) сталь становится мягкой и вязкой;
 - в) увеличивается твердость, прочность и износостойкость.
- 5. Как называется структура, представляющая собой пересыщенный твердый раствор углерода в α-железе?
 - а) мартенсит;
 - б) аустенит;
 - в) цементит

Вариант № 3

- 1. В чем заключается термическая обработка стали?
- а) в нагреве до определенной температуры, выдержке при этой температуре и последующем охлаждении с требуемой скоростью охлаждения;

- б) в быстром или медленном охлаждении после нагрева;
- в) в нагреве до высокой температуры и последующем быстром охлаждении.
- 2. Назовите основные виды термической обработки стали.
- а) отжиг, нормализация, закалка, цементация;
- б) отжиг, нормализация, закалка, отпуск;
- в) отжиг, закалка, цементация, отпуск.
- 3. Из перечисленных видов отжига первого рода выделите из списка тот, который ведется при температуре $400\text{-}680\,^{\circ}\text{C}$:
 - а) рекристаллизационный отжиг;
 - б) отжиг для снятия напряжения;
 - в) диффузионный отжиг;
 - г) отжиг для воронения.
- 4. Для получения нужной структуры металла применяют три вида отпуска стали: средний, низкий и высокий. Укажите температуру среднего отпуска стали:
 - a) 100-200 °C;
 - б) 200-350 °С;
 - в) 350-400 °C;
 - г) 400-680 °C.
 - 5. Что такое закаливаемость
 - а) глубина проникновения закаленной зоны;
 - б) процесс образования мартенсита;
 - в) способность металла повышать твердость при закалке.

Вариант № 4

- 1. У сплава А критическая скорость закалки больше, чем у сплава Б. У какого сплава больше критический диаметр?
 - а) у сплава А;
 - б) у сплава Б;
 - в) критический диаметр не зависит от критической скорости закалки.
- 2. При ... обработке металлов нагрев сочетается с пластической деформацией (вставьте пропущенное слово):
 - а) собственно термической;
 - б) индукционной;
 - в) термохимической;
 - г) термомеханической.
 - 3. В результате повышения температуры отпуска углеродистой стали наблюдается:
 - а) повышение твердости;
 - б) понижение твердости;
 - в) понижение пластичности.
- 4. Нагрев стали до температуры ниже 723°C, выдержка при этой температуре и последующее охлаждение на воздухе называют:
 - а) закалкой;
 - б) отпуском;
 - в) нормализацией;
 - г) отжигом.

- 5. В результате закалки в воду углеродистая сталь приобретает структуру:
- а) аустенит закалки;
- б) мартенсит закалки;
- в) троостит закалки;

Эталон ответов

Вариан	т 1 Ва	ариант 2	Вариант 3	Вариант 4
1. a	1.	б	1. a	1. б
2. в	2.	В	2. б	2. г
3. a	3.	a	3. б	3. б
4. б	4.	В	4. в	4. б
5. в	5.	a	5. в	5. б

Критерии оценки

- 5 правильных ответов оценка «5»;
- 4 правильных ответа оценка «4»;
- 3 правильных ответа оценка «3»;
- 2 и менее правильных ответов оценка «2»

Ситуационные задачи

Задача № 1

При экспериментальном определении прокаливаемости одной плавки стали 40X способом торцовой закалки характеристическое расстояние составило 12 мм. Определить на основании этих данных и по номограмме М.Е. Блантера (рис.1) критический диаметр образца этой плавки для случая охлаждения: а) в масле и б) в воде. Расчет сделать для цилиндрического образца с отношением L/D=10.

Задача № 2

При экспериментальном определении прокаливаемости одной плавки заэвтектоидной стали 9XC протяженность зоны с мартенситной структурой была 25 мм. Определить по номограмме М.Е. Блантера (рис.1) критический диаметр образца от этой плавки для цилиндрического образца с отношением L/D: а) 10 (длинный образец) и б) 0,1 (плоская шайба). Принять, что образцы были охлаждены в масле.

Задача № 3

При экспериментальном определении прокаливаемости двух плавок стали 40ХН, выполненном с нагревом до одинаковой температуры, расстояние до полумартенситной зоны составило 18 мм для образца одной плавки и 20 мм для образца другой плавки. Определить по номограмме М.Е. Блантера (рис.1) критический диаметр для этих двух плавок при охлаждении в масле и указать возможные причины неодинаковой прокаливаемости разных плавок одной марки стали. Расчет сделать для цилиндрического образца с отношением L/D=10.

Залача № 4

Из термокинетической диаграммы для стали марки X определили критическую скорость закалки v_{Kp} =50 град/с. Определить по номограмме М.Е. Блантера (рис.1) прокаливаемость для шара, изготовленного из данной стали. Расчет сделать для случая охлаждения на воздухе, в масле, в воде и при идеальном охлаждении. Объясните полученный результат.

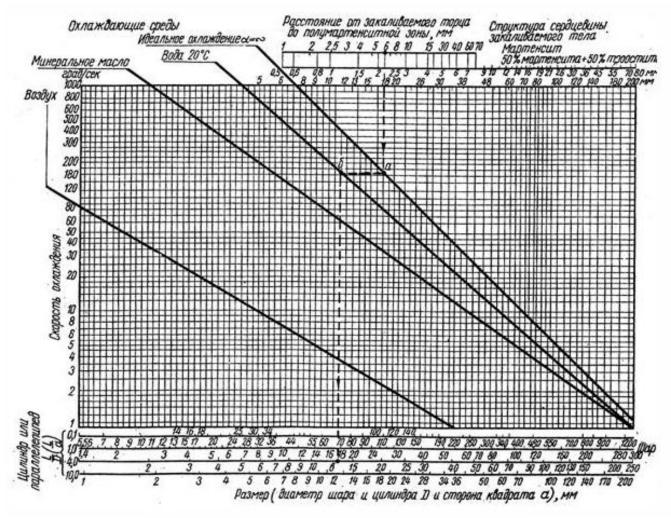


Рис. 1. Номограмма для определения прокаливаемости стали

Раздел 3. Магнитные материалы Тема 3.1. Магнитомягкие материалы Тема 3.2. Магнитотвёрдые материалы Устный опрос

- 1. Чем отличаются магнитомягкие материалы от магнитотвердых?
- 2. Какие детали изготавливают из электротехнической нелегированной стали?
- 3. В чем выражается преимущества аморфных сплавов?
- 4. Какие из магнитотвердых материалов применяют наиболее широко?
- 5. Укажите какие сплавы используют для изготовления электронагревателей, элементов сопротивлений и реостатов.
- 6. Укажите области применения сплавов с заданным коэффициентом теплового расширения.
 - 7. В чем заключается эффект «памяти формы»

Раздел 4. Диэлектрические и электроизоляционные материалы Общие сведения о неметаллических материалах Полимеры и электроизоляционные пластмассы Устный опрос

- 1. Как влияет форма макромолекул полимеров на их физико-механические свойства?
- 2. Как классифицируются полимерные материалы по происхождению, отношению к нагреву, полярности?

- 3. Какие полимеры называются термопластичными, термореактивными? Приведите примеры.
- 4. Каковы температурные зависимости прочностных характеристик термопластичных и термореактивных полимеров?
 - 5. В чем сущность старения полимерных материалов?
 - 6. Из чего состоят пластмассы?
 - 7. Каковы основные недостатки пластмасс?
 - 8. Как ведут себя реактопласты при нагревании?
 - 9. Что такое термопласт?
 - 10. Перечислите основные виды термопластов.
 - 11. Почему реактопласты не подвергают повторной переработке?
- 12. Что называется резиной? Каковы ее состав и назначение отдельных компонентов?
- 13. В чем сущность процесса вулканизации; как изменяются свойства резины после вулканизации?
- 14. Назовите основные синтетические каучуки, их состав и области применения резин на их основе
- 15. Назовите основные физико-механические свойства различных резиновых материалов и их применение.
- 16. В чем сущность процессов старения резины? Какими способами защищают резину и резиновые детали от старения? Укажите эксплуатационную стойкость резин.
 - 17. Какое строение имеет стекло? Что входит в состав стекла?
 - 18. Как классифицируют стекло по химическому составу и назначению?
 - 19. Какими свойствами обладает стекло?
 - 20. Что такое ситалл, триплекс?

2.2 Критерии оценки оценочных средств текущего контроля успеваемости

2.2.1. Критерии оценки устных (письменных) ответов обучающихся

Оценка «отлично» ставится в том случае, если обучающийся показывает верное понимание рассматриваемых вопросов, дает точные формулировки и истолкование основных понятий, строит ответ по собственному плану, сопровождает рассказ примерами, умеет применить знания в новой ситуации при выполнении практических заданий; может установить связь между изучаемым и ранее изученным материалом по курсу, а также с материалом, усвоенным при изучении других предметов.

Оценка «хорошо» ставится, если ответ обучающегося удовлетворяет основным требованиям к ответу на оценку «отлично», но дан без использования собственного плана, новых примеров, без применения знаний в новой ситуации, без использования связей с ранее изученным материалом и материалом, усвоенным при изучении других предметов; если учащийся допустил одну ошибку или не более двух недочетов и может их исправить самостоятельно или с небольшой помощью преподавателя.

Оценка «удовлетворительно» ставится, если обучающийся правильно понимает суть рассматриваемого вопроса, но в ответе имеются отдельные пробелы в усвоении вопросов курса, не препятствующие дальнейшему усвоению программного материала; умеет применять полученные знания при решении простых задач с использованием стереотипных решений, но затрудняется при решении задач, требующих более глубоких подходов в оценке явлений и событий; допустил не более одной грубой ошибки и двух недочетов, не более одной грубой и одной негрубой ошибки, не более двух-трех негрубых ошибок, одной негрубой ошибки и трех недочетов; допустил четыре или пять недочетов.

Оценка «неудовлетворительно» ставится, если обучающийся не овладел основными знаниями и умениями в соответствии с требованиями программы и допустил больше ошибок и недочетов, чем необходимо для оценки удовлетворительно.

3.2.2. Критерии оценки практических и лабораторных работ обучающихся

Оценка «отлично» ставится, если обучающийся выполняет практическую работу и лабораторную в полном объеме с соблюдением необходимой последовательности действий, самостоятельно и правильно выбирает необходимое оборудование; все приемы проводит в условиях и режимах, обеспечивающих получение правильных результатов и выводов; соблюдает требования правил техники безопасности.

Оценка «хорошо» ставится, если выполнены требования к оценке отлично, но было допущено два-три недочета, не более одной негрубой ошибки и одного недочета.

Оценка «удовлетворительно» ставится, если работа выполнена не полностью, но объем выполненной части таков, что позволяет получить правильный результат и вывод; если в ходе выполнения приема были допущены ошибки.

Оценка «неудовлетворительно» ставится, если работа выполнена не полностью и объем выполненной части работ не позволяет сделать правильных выводов; если приемы выполнялись неправильно.

Во всех случаях оценка снижается, если обучающийся не соблюдал правила техники безопасности.

2.2.3. Критерии оценки участия в мозговом штурме

Оценка «отлично» выставляется обучающемуся (члену группы), если в процессе решения проблемной ситуации продемонстрированы глубокие знания дисциплины, сущности проблемы, даны логически последовательные, содержательные, полные, правильные и конкретные ответы на все вопросы; даны рекомендации по использованию данных в будущем для аналогичных ситуаций;

Оценка «хорошо» выставляется обучающемуся (члену группы), если все рассуждения и обоснования верны, однако, имеются незначительные неточности, представлен недостаточно полный выбор стратегий поведения/методов/инструментов (в части обоснования);

Оценка «удовлетворительно» выставляется обучающемуся (члену группы), слабо ориентирующемуся в материале; в рассуждениях обучающийся не демонстрирует логику ответа, плохо владеет профессиональной терминологией, не раскрывает суть проблемы и не предлагает конкретного ее решения; обучающийся не принимает активного участия в работе группы, выполнившей задание на «хорошо» или «отлично»;

Оценка «неудовлетворительно» выставляется обучающемуся (члену группы), не принимавшему участие в работе группы или группе, не справившейся с заданием на уровне, достаточном для проставления положительной оценки.

3. КОМПЛЕКТ КОНТРОЛЬНО-ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИЯ ПО УЧЕБНОЙ ДИСЦИПЛИНЕ

3.1. Назначение

Контрольно-оценочное средство предназначено для промежуточной аттестации по учебной дисциплине «Материаловедение», оценки знаний и умений аттестуемых, а также элементов ПК и ОК.

3.2. Форма и условия аттестации

Аттестация проводится в форме письменного экзамена по завершении освоения всех тем учебной дисциплины, при положительных результатах текущего контроля. К экзамену по дисциплине допускаются студенты, полностью выполнившие все лабораторные работы и практические задания по данной дисциплине.

Контрольно-оценочные средства для проведения промежуточной аттестации доводятся до сведения студентов не позднее, чем за месяц до окончания изучения дисциплины. На основе разработанного и объявленного обучающимся перечня теоретических вопросов и практических задач, рекомендуемых для подготовки к экзамену, составляются экзаменационные билеты, содержание которых до обучающихся не доводится. Комплект билетов по своему содержанию охватывает все основные вопросы пройденного материала по предмету. Число экзаменационных билетов разрабатывается больше числа студентов в экзаменующейся группе. Номер экзаменационного билета для обучающихся определяется с помощью генератора случайных чисел.

Экзамен проводится в специально подготовленных помещениях. На выполнение задания по билету студенту отводится не более 1 академического часа. В случае неточных и неполных ответов обучающего на вопросы экзаменационного билета преподаватель вправе задать дополнительные вопросы из перечня включенных в оценочное средство в форме блиц-опроса (без предварительной подготовки). Во время сдачи промежуточной аттестации в устной форме в аудитории может находиться одновременно не более 4-6 обучающихся.

3.3. Необходимые ресурсы

1. Материаловедение : учебник для СПО/ Г.Г. Сеферов, В.Т. Батиенков, Г.Г. Сеферов, А.Л. Фоменко ; под ред. канд. техн. наук, доц. В.Т. Батиенкова. — Москва : ИНФРА-М, 2023. — 151 с. — (Среднее профессиональное образование). — ISBN 978-5-16-100403-6. - . - URL: https://new.znanium.com/catalog/product/1081361.- Текст : электронный (Основное электронное издание — ОЭИ 1.)

3.4. Время проведения экзамена (дифференцированного зачета, зачета)

На подготовку к устному ответу на экзамене студенту отводится не более 45 минут. Время устного ответа студента на экзамене составляет 15 минут.

3.5. Структура оценочного средства

Каждый индивидуальный вариант оценочного средства (экзаменационный билет) включают в себя 36 теоретических заданий.

3.5.Структура оценочного средства

Каждый индивидуальный вариант оценочного средства (экзаменационный билет) включают в себя теоретические вопросы

3.5.1. Перечень теоретических и практических вопросов по разделам и темам (тестовые задания)

- №1. Металловедение это наука изучающая:
 - 1.Строение металлов и сплавов
- 2. Строение и свойства металлов
- 3. Состав и строение металлов и сплавов
- №2. Явление, при котором вещества, состоящие из одного и того же элемента, имеют разные свойства, называется:

- 1. Аллотропией
- 2. Кристаллизацией
- 3.Сплавом
- №3. Вещество, в состав которого входят два или несколько компонентов, называется:
- 1. Металлом
- 2.Сплавом
- 3. Кристаллической решеткой
- №4. Вес одного кубического сантиметра металла в граммах, называется:
- 1. Удельным весом
- 2. Теплоемкостью
- 3. Тепловое (термическое) расширение
- №5. Способность металлов увеличивать свои размеры при нагревании, называется:
- 1.Теплоемкостью
- 2.Плавлением
- 3 Тепловое (термическое) расширение
- №6. Способность металлов противостоять разрушающему действию кислорода во время нагрева, называется:
- 1. Кислотостойкостью
- 2. Жаростойкостью
- 3. Жаропрочностью
- №7. Явление разрушения металлов под действием окружающей среды, называется:
- 1. Жаростойкостью
- 2. Жаропрочностью
- 3. Коррозией
- №8. Механические свойства металлов это:
- 1. Кислотостойкость и жаростойкость
- 2. Жаропрочность и пластичность
- 3. Теплоемкость и плавление
- №9. Способность металлов не разрушаться под действием нагрузок, называется:
- 1. Упругостью
- 2.Прочностью
- 3.Пластичностью
- №10. Способность металлов, не разрушаясь, изменять под действием внешних сил свою форму и сохранять измененную форму после прекращения действия сил, называется:
- 1. Упругостью
- 2.Пределом прочности
- 3.Пластичностью
- №11. Способность металлов сопротивляться вдавливанию в них какого либо тела, называется:
- 1. Твердостью
- 2.Пластичностью
- 3. Упругостью
- №12. Способность металлов не разрушаться под действием нагрузок в условиях высоких температур, называется:
- 1. Жаростойкостью
- 2.Плавлением
- 3. Жаропрочностью
- №13. В сером чугуне углерод находится в виде:
- 1.В виде графита
- 2.В виде цементита
- №14. Сталь более высокого качества получается:
- 1.В электропечах

- 2.В доменных печах
- 3.В мартеновских печах
- №15. Сплав железа с углеродом, при содержании углерода менее 2,14%, называется:
- 1.Чугун
- 2.Сталь
- 3.Латунь
- №16. «Вредные» примеси в сталях, это:
- 1.Сера и фосфор
- 2. Марганец и кремний
- 3. Железо и углерод
- №17. Марка быстрорежущей стали:
- 1.9XΦ
- 2.У 12
- 3.P 18
- №18. Какая из этих сталей легированная?
- 1.Y7A
- 2.Сталь 45сп
- 3.38ГН2Ю2
- №19. Какая из этих сталей имеет 0,42% углерода, марганца менее 2%, кремния 2%, алюминия 3%?
- 1.42Мц2СЮ
- 2.42МцС2Ю3
- 3.42С2Ю3
- №20. Какая из этих сталей полуспокойная?
- 1.Сталь 85пс
- 2.Сталь 45сп
- 3.Сталь 55кп
- №21. Марка серого чугуна:
- 1.СЧ24-44
- 2.КЧ45-6
- 3.ИЧХ12Г3М
- №22. Нагрев изделия до определенной температуры, выдержка при этой температуры и медленное охлаждение, это:
- 1.Закалка
- 2. Нормализация
- 3.Отжиг
- №23. Нагревание изделие до определенной температуры, выдержка и быстрое охлаждение с помощью охлаждающей среды, это:
- 1.Закалка
- 2.Отжиг
- 3. Нормализация
- №24. Закалка и последующий отпуск, это:
- 1. Термическая обработка
- 2. Прокаливаемость
- 3. Термическое улучшение
- №25. Нагревание стального изделия в среде легко отдающей углерод (древесный уголь), это:
- 1. Азотирование
- 2. Цементация
- 3. Алитирование
- №26. Одновременное насыщение поверхности стального изделия углеродом и азотом, это:
- 1. Цианирование

- 2. Цементация
- 3. Азотирование
- №27. Какая технология применяется для получения изделий из ковкого чугуна:
- 1. Холодная штамповка
- 2. Горячая пластическая деформация
- 3. Длительный отжиг отливок из белого чугуна
- №28. Какова цель модифицирования высокопрочных чугунов:
- 1.Измельчение пластинок графита
- 2.Получение перлитной структуры металлической основы
- 3. Придание графитным включениям шаровидной формы
- №29. Какой химический элемент преобладает в сталях:
- 1. Углерод
- 2. Железо
- 3. Хром
- 4. Никель
- 5.Кислород
- №30. Измерение, какого механического свойства используется обычно для контроля качества термической обработки:
- 1. Твердость
- 2.Прочность
- 3.Пластичность
- 4. Ударная вязкость
- 5.Износостойкость
- №31. Какой химический элемент делает сталь коррозионностойкой:
- 1. Мп (марганец)
- 2. Ni (никель)
- 3. Cr (хром)
- 4. С (углерод)
- Ті (титан)
- №32. Деформация тела под действием внешних сил, сопровождающаяся изменением кривизны деформируемого тела, это:
- 1. Кручение
- 2.Изгиб
- 3.Сдвиг
- №33. Силумины это
- 1.Сплавы алюминия
- 2.Сплавы магния
- 3.Сплавы меди
- №34. Бронзы это
- 1.Сплавы алюминия
- 2.Сплавы меди
- 3.Сплавы магния
- №35. Латуни это
- 1.Сплавы магния с алюминием
- 2.Сплавы алюминия с кремнием
- 3.Сплавы меди с цинком
- №36. Обозначение твердости металла по методу Бринелля:
- 1.HRC
- 2.HB
- 3.HV

3.6. Критерии оценки промежуточной аттестации

Оценка «отлично» - теоретическое содержание курса освоено полностью, без пробелов, умения сформированы, все предусмотренные программой учебные задания выполнены, качество их выполнения оценено высоко.

Оценка «хорошо» - теоретическое содержание курса освоено полностью, без пробелов, некоторые умения сформированы недостаточно, все предусмотренные программой учебные задания выполнены, некоторые виды заданий выполнены с ошибками.

Оценка «удовлетворительно» - теоретическое содержание курса освоено частично, но пробелы не носят существенного характера, необходимые умения работы с освоенным материалом в основном сформированы, большинство предусмотренных программой обучения учебных заданий выполнено, некоторые из выполненных заданий содержат опибки.

Оценка «неудовлетворительно» - теоретическое содержание курса не освоено, необходимые умения не сформированы, выполненные учебные задания содержат грубые ошибки.